Connect with us

विज्ञान

Just five DNA letters flip chromatin from fluid to solid-like state

Published

on

Just five DNA letters flip chromatin from fluid to solid-like state

मानव कोशिकाओं के अंदर डीएनए मुक्त रूप से तैरता नहीं है। इसके बजाय, यह एक लंबी श्रृंखला बनाने वाली छोटी प्रोटीन इकाइयों के चारों ओर कसकर लपेटा जाता है, जिसमें डीएनए अगली इकाई पर जाने से पहले प्रत्येक इकाई के चारों ओर घूमता है। यह डीएनए-प्रोटीन कॉम्प्लेक्स है क्रोमैटिन कहा जाता है और लगभग 2 मीटर आनुवंशिक सामग्री को केवल कुछ माइक्रोमीटर चौड़े नाभिक के अंदर फिट होने की अनुमति देता है।

हालाँकि, क्रोमैटिन डीएनए को कुशलतापूर्वक पैक करने से कहीं अधिक कार्य करता है: इसकी व्यवस्था प्रभावित करती है कि कौन से जीन पहुंच योग्य हैं और कौन से बंद रहते हैं। कुछ क्षेत्र शिथिल रूप से व्यवस्थित होते हैं, जिससे कोशिका आनुवंशिक निर्देशों को पढ़ पाती है, जबकि अन्य सघन होते हैं और उन तक पहुंचना कठिन होता है। कोशिकाएँ इन भौतिक अवस्थाओं को कैसे नियंत्रित करती हैं, यह आणविक जीव विज्ञान में एक केंद्रीय प्रश्न रहा है।

में एक नया अध्ययन विज्ञान अब रिपोर्ट की गई है कि आश्चर्यजनक रूप से छोटा संरचनात्मक विवरण, पड़ोसी डीएनए-प्रोटीन इकाइयों के बीच का अंतर, क्रोमैटिन के व्यवहार को प्रभावित कर सकता है। ऐसा इसलिए है क्योंकि डीएनए सीधा नहीं है, यूटी साउथवेस्टर्न मेडिकल सेंटर बायोकैमिस्ट्री प्रोफेसर और अध्ययन के वरिष्ठ लेखक माइकल रोसेन ने समझाया। यह मुड़ा हुआ है, इसलिए अंतर में छोटा सा बदलाव भी डीएनए के साथ प्रोटीन मोतियों के बैठने के तरीके को बदल सकता है और पूरे स्ट्रैंड को नया आकार दे सकता है।

ये मनके जैसे प्रोटीन, जिन्हें हिस्टोन कहा जाता है, उजागर डीएनए के छोटे विस्तार से जुड़े होते हैं। जीवित कोशिकाओं में, इस लिंकर डीएनए की लंबाई जीनोम में स्वाभाविक रूप से भिन्न होती है, केवल कुछ डीएनए बिल्डिंग ब्लॉकों द्वारा भिन्न होती है।

प्रोफेसर रोसेन ने कहा, क्योंकि अभिविन्यास में परिवर्तन क्रोमेटिन फाइबर के साथ फैलता है, वे पूरे अणु के आकार को बदल देते हैं और यह आस-पास के तारों के साथ कैसे बातचीत करता है। डीएनए अनुक्रम या प्रोटीन संरचना में परिवर्तन के बजाय ये अंतःक्रियात्मक अंतर, समान घटकों से बने क्रोमैटिन को बहुत अलग तरीके से व्यवहार करने का कारण बनते हैं।

इसकी जांच करने के लिए, शोधकर्ताओं ने प्रयोगशाला में समान डीएनए और प्रोटीन का उपयोग करके क्रोमैटिन का निर्माण किया, केवल लिंकर डीएनए की लंबाई में परिवर्तन किया। उन्होंने छोटे लिंकर्स वाले क्रोमैटिन की तुलना थोड़े लंबे लिंकर्स वाले क्रोमैटिन से की (सिर्फ पांच डीएनए बेस जोड़े से भिन्न)।

टीम ने रैपिड फ़्रीज़िंग और उच्च-रिज़ॉल्यूशन इमेजिंग का उपयोग किया। व्यक्तिगत न्यूक्लियोसोम – क्रोमैटिन के निर्माण खंड – सीधे कैप्चर किए जाने के लिए काफी बड़े होते हैं, जिससे शोधकर्ताओं को समूहों के अंदर अधिकांश अणुओं की कल्पना करने की अनुमति मिलती है। उन्होंने ट्रैक किया कि क्लस्टर कैसे बने, विलीन हुए, स्थानांतरित हुए और अलग हुए।

नतीजों से स्पष्ट विभाजन सामने आया। छोटे डीएनए लिंकर्स के साथ क्रोमैटिन इसकी लंबाई के साथ अधिक खुला रहता है, जिससे इसकी इकाइयां बाहर की ओर पहुंचती हैं और पड़ोसी धागों के साथ बातचीत करती हैं, जैसे ढीले ढंग से बिछाए गए धागे जो आसानी से उलझ जाते हैं। ये समूह सघन रूप से जुड़े हुए थे और यांत्रिक रूप से प्रतिरोधी थे, धीरे-धीरे जुड़ते थे और अलग होना मुश्किल साबित होता था।

दूसरी ओर लंबे लिंकर्स वाले क्रोमैटिन अंदर की ओर मुड़े होते हैं, जबकि इकाइयां एक ही स्ट्रैंड के भीतर अधिक इंटरैक्ट करती हैं। इससे पड़ोसी धागों के बीच संबंध कम हो गए, जिससे ऐसे गुच्छे उत्पन्न हुए जो कम स्थिर, अधिक तरल और घुलने में आसान थे।

प्रोफेसर रोसेन ने कहा, “वे अलग-अलग इंटरैक्शन पैटर्न हैं जो एक प्रणाली को एक साधारण तरल की तरह व्यवहार करते हैं और दूसरे को मूर्खतापूर्ण पुट्टी या टूथपेस्ट की तरह व्यवहार करते हैं।”

नेशनल इंस्टीट्यूट ऑफ हेल्थ की बायोकेमिस्ट यामिनी दलाल ने कहा कि अध्ययन शक्तिशाली अंतःविषय तकनीकों का उपयोग करके लंबे समय से चले आ रहे, असमान विचारों को पुष्ट और एकीकृत करता है। उन्होंने कहा, क्रोमैटिन को लंबे समय से एक स्व-संगठित संरचना के रूप में समझा जाता है, न्यूक्लियोसोम रिक्ति दृढ़ता से प्रभावित करती है कि यह कैसे मोड़ता है।

“जीनोम का संगठन क्रोमेटिन में ही एन्कोड किया गया है। संरचना को उभरने के लिए आपको अतिरिक्त निर्देशों की आवश्यकता नहीं है।”

जब शोधकर्ताओं ने मानव और चूहे की कोशिकाओं की जांच की, तो उन्हें प्रयोगशाला प्रयोगों में देखे गए पैकिंग पैटर्न के समान घने क्रोमैटिन क्षेत्र मिले। प्रो. रोसेन ने सुझाव दिया कि इससे पता चलता है कि नाभिक के अंदर भी वही भौतिक नियम लागू होते हैं जो टेस्ट ट्यूब में लागू होते हैं, हालांकि क्या कोशिकाएं क्रोमैटिन फ़ंक्शन को विनियमित करने के लिए सक्रिय रूप से इस सुविधा का उपयोग करती हैं, यह एक खुला प्रश्न बना हुआ है।

डॉ. दलाल इस बात से सहमत थे कि प्रदर्शित भौतिकी जैविक रूप से यथार्थवादी है, लेकिन यह मानने के प्रति आगाह किया कि कोशिकाएं हर जगह इस अंतर को ठीक करती हैं। उन्होंने कहा, एक गतिशील क्रोमैटिन में सटीक पांच-बेस-जोड़ी अंतर बनाए रखना मुश्किल होगा। इस तरह के प्रभाव उच्च क्रम वाले जीनोमिक क्षेत्रों में सबसे अधिक मायने रख सकते हैं, जैसे कि दोहराए जाने वाले डीएनए, जहां छोटे व्यवधान भी नियामक अणुओं के माध्यम से आसानी से आगे बढ़ने और डीएनए तक पहुंचने में बदलाव ला सकते हैं।

क्रोमैटिन के दोहराव वाले डीएनए विस्तार में विकार पहले से ही कैंसर और उम्र बढ़ने में जीनोम अस्थिरता से जुड़ा हुआ है। डॉ. दलाल ने निष्कर्षों को इन कमजोरियों को समझने के लिए एक भौतिक खाका के रूप में देखा।

जीन फ़ंक्शन के दृष्टिकोण से भी, अध्ययन उत्तेजक है। कैंब्रिज विश्वविद्यालय की प्रोफेसर और अंतरराष्ट्रीय मानव कोशिका एटलस परियोजना की सह-संस्थापक सारा टीचमैन ने कहा कि परिणाम इस संभावना को बढ़ाते हैं कि क्रोमैटिन की भौतिक स्थिति इस बात को प्रभावित कर सकती है कि विभिन्न प्रकार की कोशिकाओं में जीन कैसे विनियमित होते हैं। उन्होंने कहा, मानव कोशिका एटलस जैसे बड़े प्रयास, जो कोशिकाओं के बीच आणविक अंतरों को मैप करते हैं, अंततः परीक्षण कर सकते हैं कि क्या ऐसी भौतिक क्रोमैटिन स्थिति कोशिका पहचान के साथ भिन्न होती है।

अनिर्बान मुखोपाध्याय नई दिल्ली से प्रशिक्षण प्राप्त आनुवंशिकीविद् और विज्ञान संचारक हैं।

प्रकाशित – 26 दिसंबर, 2025 सुबह 06:00 बजे IST

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

विज्ञान

CCMB scientists identify metabolism as new target for antifungal therapies

Published

on

By

CCMB scientists identify metabolism as new target for antifungal therapies

कवक का खमीर और रेशा रूप

कवकीय संक्रमण ये दुनिया भर में सबसे कम आंके गए स्वास्थ्य खतरों में से एक हैं, जो बढ़ते अस्पताल में भर्ती होने और मौतों में योगदान दे रहे हैं। मानव स्वास्थ्य से परे, कवक भी फसलों को उजाड़नापैदावार कम करें, और खाद्य असुरक्षा को बदतर बनाएं – सार्वजनिक स्वास्थ्य और कृषि दोनों के लिए दोहरा संकट पैदा करें।

अब, हैदराबाद में सीएसआईआर-सेंटर फॉर सेल्युलर एंड मॉलिक्यूलर बायोलॉजी (सीसीएमबी) के शोधकर्ताओं ने एक महत्वपूर्ण अंतर्दृष्टि का खुलासा किया है कि कवक कैसे खतरनाक हो जाते हैं। उनके निष्कर्ष केवल जीन नेटवर्क के बजाय फंगल चयापचय को लक्षित करके एंटीफंगल थेरेपी विकसित करने के लिए एक आशाजनक नए मार्ग की ओर इशारा करते हैं।

कवक दो रूपों में मौजूद हो सकता है

वैज्ञानिक श्रीराम वराहण के नेतृत्व में किए गए अध्ययन से पता चलता है कि कवक की आकार बदलने की क्षमता – इसकी संक्रामकता का एक प्रमुख कारक – न केवल आनुवंशिक संकेतों से बल्कि इसकी आंतरिक ऊर्जा पैदा करने वाली प्रक्रियाओं से भी प्रेरित होती है। कवक दो प्रमुख रूपों में मौजूद हो सकता है: एक छोटा, अंडाकार खमीर रूप और एक बड़ा फिलामेंटस रूप।

(बाएं से) सिद्धि गुप्ता, ध्रुमी शाह, श्रीराम वरहान और सुदर्शन एम

(बाएं से) सिद्धि गुप्ता, ध्रुमी शाह, श्रीराम वराहण और सुदर्शन एम | फोटो साभार: व्यवस्था द्वारा

यीस्ट फिलामेंटस रूप में परिवर्तित होने के लिए कैसे यात्रा करता है

यीस्ट का रूप मेज़बान वातावरण में लंगर डालने के लिए स्थान की तलाश में यात्रा करता है। एक बार जब इसे कोई मिल जाता है, तो यह तंतु में बदल जाता है, जिससे यह ऊतकों पर आक्रामक रूप से आक्रमण करने की अनुमति देता है। मानव शरीर के अंदर, कवक पोषक तत्वों की कमी, तापमान परिवर्तन और प्रतिस्पर्धी रोगाणुओं का सामना करते हैं। ये तनाव आम तौर पर फिलामेंटस रूप में उनके परिवर्तन को ट्रिगर करते हैं, जिसे खत्म करना प्रतिरक्षा कोशिकाओं और दवाओं दोनों के लिए बहुत कठिन होता है।

फंगल आक्रमण के लिए आवश्यक एक महत्वपूर्ण कड़ी

जबकि पहले के अध्ययनों ने उन जीनों पर बहुत अधिक ध्यान केंद्रित किया है जो इन आकार परिवर्तनों को नियंत्रित करते हैं, सीसीएमबी अनुसंधान चयापचय को एक महत्वपूर्ण, पहले से नजरअंदाज किए गए चालक के रूप में उजागर करता है। श्री वाराहन ने कहा, “हमने उस चीज़ का खुलासा किया जिसे एक छिपे हुए जैविक शॉर्ट सर्किट के रूप में वर्णित किया जा सकता है।” “हमें ग्लाइकोलाइसिस – शर्करा को तोड़ने की प्रक्रिया – और फंगल आक्रमण के लिए आवश्यक सल्फर युक्त अमीनो एसिड के उत्पादन के बीच एक सीधा संबंध मिला।”

कवक को शर्करा की आवश्यकता क्यों है?

जब कवक तेजी से शर्करा का उपभोग करते हैं, तो वे आक्रामक फिलामेंट निर्माण शुरू करने के लिए आवश्यक सल्फर-आधारित अमीनो एसिड उत्पन्न करते हैं। टीम ने परीक्षण किया कि जब चीनी का टूटना धीमा हो जाता है तो क्या होता है। इन स्थितियों में, कवक अपने हानिरहित खमीर रूप में फंसे रहे और रोग पैदा करने वाली अवस्था में परिवर्तित नहीं हो सके। हालाँकि, जब सल्फर युक्त अमीनो एसिड को बाहरी रूप से जोड़ा गया, तो कवक ने जल्दी से अपनी आक्रामक क्षमता हासिल कर ली।

शोधकर्ताओं ने एक अध्ययन किया कैनडीडा अल्बिकन्स तनाव में चीनी के टूटने के लिए एक प्रमुख एंजाइम की कमी है और इसे “चयापचय रूप से अपंग” पाया गया है। इसे आकार बदलने में संघर्ष करना पड़ा, प्रतिरक्षा कोशिकाओं द्वारा आसानी से नष्ट कर दिया गया, और माउस मॉडल में केवल हल्की बीमारी का कारण बना।

फंगल रोगजनकों की ‘अकिलीज़ हील’

इन निष्कर्षों से पता चलता है कि फंगल चयापचय में हस्तक्षेप करना फंगल रोगजनकों की ‘अकिलीज़ हील’ हो सकता है। श्री वाराहन का कहना है कि दवा-प्रतिरोधी फंगल संक्रमण बढ़ने के साथ, चयापचय को लक्षित करने से सुरक्षित, अधिक प्रभावी एंटीफंगल उपचार हो सकते हैं – जिससे मानव स्वास्थ्य और कृषि सुरक्षा दोनों को लाभ होगा।

Continue Reading

विज्ञान

What is the Zeigarnik effect?

Published

on

By

What is the Zeigarnik effect?

यह क्या है?

ज़िगार्निक प्रभाव एक ऐसी घटना है जो परिकल्पना करती है कि किसी व्यक्ति में उन चीजों, कार्यों या घटनाओं को याद करने की अधिक प्रवृत्ति होती है जो पूरी होने की तुलना में अधूरी छोड़ दी गई थीं। यह कुछ ऐसा है जिसे व्यक्ति संभवतः दैनिक आधार पर अनुभव करता है। इसका प्रभाव तब अनुभव किया जा सकता है जब आपका कोई फोन कॉल वापस न आया हो, काम अधूरा रह गया हो, या यहां तक ​​कि आधा-अधूरा नाश्ता किया हो जिससे आपके पेट का एक हिस्सा ही भरा हो। यदि यह अधूरा है या बाधित हुआ है, तो इस बात की बहुत अधिक संभावना है कि आपको यह याद रहेगा। ज़िगार्निक प्रभाव का पहली बार अध्ययन और परिचय लिथुआनियाई-सोवियत मनोवैज्ञानिक ब्लूमा ज़िगार्निक द्वारा किया गया था, जिनके नाम पर इसका नाम रखा गया था। उन्होंने पहली बार अपने शैक्षणिक सलाहकार और मनोवैज्ञानिक कर्ट लेविन द्वारा किए गए एक अवलोकन के बाद इस पर ध्यान दिया, जिसमें उन्होंने देखा था कि एक वेटर उन आदेशों को आसानी से याद कर सकता है जिनके लिए अभी तक भुगतान नहीं किया गया है। लेकिन ग्राहकों द्वारा अपने भोजन के लिए भुगतान करने के बाद, वेटर उसी ऑर्डर के किसी भी विवरण को याद करने में विफल रहा। इस घटना के बाद, ब्लूमा ज़िगार्निक ने ऐसे प्रयोग करना शुरू किया जो इस घटना को और स्पष्ट करेंगे। उनका शोध जर्नल में प्रकाशित हुआ था मनोवैज्ञानिक अनुसंधान: धारणा, ध्यान, स्मृति और कार्रवाई का एक अंतर्राष्ट्रीय जर्नल।

मन के भीतर

अब यहाँ एक प्रश्न है. अधूरे कार्य हमारी स्मृति में पूरे हो चुके कार्यों से कहीं अधिक जिद के साथ क्यों बने रहते हैं? ज़िगार्निक ने कहा था कि मस्तिष्क पूरे हो चुके कार्यों और अधूरे कार्यों के बीच अंतर कर सकता है। जब भी हम कोई काम शुरू करते हैं तो मन में एक तरह का तनाव पैदा हो जाता है। जानकारी संवेदी स्मृति (पांच पारंपरिक इंद्रियों के माध्यम से ली गई जानकारी) को भेजी जाती है, जहां इसे अल्पकालिक स्मृति में स्थानांतरित होने से पहले क्षण भर के लिए संग्रहीत किया जाता है। यहां दी गई जानकारी जल्द ही भुला दी जाती है. हालाँकि, जब कोई कार्य अधूरा छोड़ दिया जाता है, तो यह एक खुला लूप बन जाता है और मस्तिष्क के अल्पकालिक स्मृति क्षेत्र में लगातार दोहराया जाता है, ताकि जानकारी नष्ट न हो। यह एक संज्ञानात्मक तनाव (मानसिक असुविधा जब किसी व्यक्ति को परस्पर विरोधी स्थितियों का सामना करना पड़ता है) सामने लाता है।

उपयोग एवं रोकथाम

हां, वे दो विरोधी शब्द निश्चित रूप से इस घटना पर फिट बैठते हैं। जिस तरह गलत हाथों में कैंची चोट का कारण बन सकती है, लेकिन सही हाथों में वह अद्भुत कागज शिल्प बना सकती है, उसी तरह कुछ मामलों को समझना महत्वपूर्ण है जिनमें ज़िगार्निक प्रभाव का उपयोग लाभ के लिए किया जा सकता है। जैसे अध्ययन सत्रों के दौरान, जहां सुरक्षित रूप से संग्रहीत अंतिम-पढ़ी गई जानकारी के साथ दिमाग को आराम देने के लिए बीच-बीच में रणनीतिक रुकावटें या छोटे ब्रेक लिए जाते हैं। फिर ऐसे समय होते हैं जब प्रभाव को रोकने की आवश्यकता होती है क्योंकि इससे दिमाग अधूरे कार्यों की एक बड़ी सूची में उलझ सकता है। इस मामले में, ‘विलंब न करके’ रोकथाम हासिल की जा सकती है। यदि आपके पास कोई छोटा काम है (अपना बिस्तर ठीक करना, फोन कॉल का जवाब देना आदि), तो इसे पूरा होने तक न रोकें।

विवाद

हालाँकि इस घटना के अध्ययन के लिए प्रयोग किए गए हैं, लेकिन इसे विवादों का भी सामना करना पड़ा है। चूंकि ध्यान में रखने के लिए कई बाहरी कारक हैं: कार्य करने वाले व्यक्ति की मानसिकता, रुकावट की प्रकृति, आदि। 2025 में ज़िगार्निक और दोनों पर आयोजित एक व्यवस्थित समीक्षा में ओव्सियानकिना प्रभाव (अधूरे कार्यों को पूरा करने की ललक), पहले की तुलना में दूसरे की वैधता को चुना गया।

Continue Reading

विज्ञान

The holy trinity of cancer care: biochemistry, microbiology and pathology

Published

on

By

The holy trinity of cancer care: biochemistry, microbiology and pathology

जैव रसायन की भूमिका

कैंसर एक कोशिका के भीतर आनुवंशिक सूक्ष्म-आणविक स्तर पर उत्पन्न होता है – जिसके परिणामस्वरूप सूक्ष्म जैव रासायनिक और सेलुलर असामान्यताओं का एक समूह होता है जो आंतरिक गश्त से बच जाते हैं – और अंततः एक पता लगाने योग्य बीमारी के रूप में प्रकट होते हैं। ओन्को-बायोकैमिस्ट्री में निदान, पूर्वानुमान और उपचार प्रतिक्रिया या प्रतिरोध की निगरानी के लिए रक्त और शरीर के तरल पदार्थों में ट्यूमर मार्करों, एंजाइमों, हार्मोन और मेटाबोलाइट्स की मात्रा निर्धारित करना शामिल है। क्लिनिकल बायोकेमिस्ट कैंसर के रासायनिक हस्ताक्षर और उपचार के प्रति शरीर की प्रणालीगत प्रतिक्रिया की निगरानी करते हैं। वे कैंसर रोगी में आधारभूत जैव रासायनिक मापदंडों और कैंसर उपचार के परिणामस्वरूप इन रासायनिक संकेतों के किसी भी उलटफेर का निर्धारण करते हैं।

ट्यूमर मार्कर जैसे प्रोस्टेट विशिष्ट एंटीजन (पीएसए), कैंसर एंटीजन-125 (सीए-125) और कार्सिनोएम्ब्रायोनिक एंटीजन (सीईए) लक्षण प्रकट होने से पहले ही प्रोस्टेट, डिम्बग्रंथि और कोलन कैंसर को चिह्नित कर सकते हैं। लैक्टेट डिहाइड्रोजनेज (एलडीएच) और बीटा2एम जैसे एंजाइम परीक्षण समग्र कैंसर बोझ का अंदाजा देते हैं। प्रोटीन वैद्युतकणसंचलन, एक परीक्षण जो रक्त प्रोटीन को अलग करता है, एक विशिष्ट “एम-स्पाइक” प्रकट कर सकता है जो मल्टीपल मायलोमा का निदान करने में मदद करता है। इसके बाद, रेडियोलॉजिकल स्कैन परिवर्तनों को पकड़ने से पहले, इन मूल्यों के डाउन-ट्रेंडिंग से पता चलता है कि उपचार काम कर रहा है या नहीं।

सीरम-मुक्त प्रकाश श्रृंखला परख जैसी उन्नत जैव रासायनिक तकनीकें इलाज करने वाले ऑन्कोलॉजिस्ट को शेष कैंसर कोशिकाओं की थोड़ी मात्रा का भी पता लगाने की अनुमति देती हैं जो पुनरावृत्ति को ट्रिगर कर सकती हैं। रक्त में चिकित्सीय दवा के स्तर को मापने से सटीक और सुरक्षित खुराक की अनुमति मिलती है। बेसलाइन और आवधिक लिवर फ़ंक्शन परीक्षण और किडनी फ़ंक्शन रक्त परीक्षण प्रणालीगत प्रतिक्रिया की प्रवृत्ति को प्रकट करते हैं। क्लिनिकल बायोकेमिस्ट कैंसर से संबंधित जीवन-घातक जटिलताओं जैसे कि ट्यूमर लसीका सिंड्रोम और घातक हाइपरकैल्सीमिया का पता लगाने वाले पहले व्यक्ति हैं। अस्थि मज्जा प्रत्यारोपण के उच्च जोखिम वाले वातावरण में, जैव रसायन अस्वीकृति और इलेक्ट्रोलाइट होमियोस्टैसिस की निगरानी करके पुनर्प्राप्ति के लिए “डैशबोर्ड” प्रदान करता है।

ऑन्कोपैथोलॉजी कैसे काम करती है | फोटो साभार: विशेष व्यवस्था

माइक्रोबायोलॉजी क्या करती है

माइक्रोबायोलॉजिस्ट कैंसर रोगियों के प्रबंधन में महत्वपूर्ण भूमिका निभाते हैं। लगभग 20% कैंसर रोगाणुओं के कारण होते हैं: वायरस और बैक्टीरिया। सहित वायरस मानव पेपिलोमावायरसहेपेटाइटिस बी वायरस, हेपेटाइटिस सी वायरस, एपस्टीन-बार वायरस, कपोसी का सारकोमा-संबंधी हर्पीसवायरस औरह्यूमन टी-लिम्फोट्रोपिक वायरस-1 सभी कैंसर का कारण बनते हैं। हेलिकोबैक्टर पाइलोरी जैसे बैक्टीरिया पेट के कैंसर से जुड़े हैं। इन रोगाणुओं का शीघ्र पता लगाने और संक्रमण के कारण होने वाले उपचार से रोकथाम में मदद मिल सकती है।

इसके अतिरिक्त, कैंसर का उपचार रोगियों की प्रतिरक्षा को कमजोर कर देता है और उन्हें जीवन-घातक अवसरवादी संक्रमणों के प्रति संवेदनशील बना देता है। माइक्रोबायोलॉजिस्ट दोषी रोगाणुओं का तेजी से और सटीक पता लगाने और संक्रमण के इलाज के लिए आवश्यक विशिष्ट रोगाणुरोधी एजेंटों (दवाओं) की पहचान करने के लिए BACTALERT 3D/240 (रक्त सूक्ष्म जीव संवर्धन प्रणाली), MALDI TOF (मैट्रिक्स-असिस्टेड लेजर डिसोर्प्शन आयनाइजेशन टाइम-ऑफ-फ़्लाइट) जैसी उन्नत पहचान तकनीकों का उपयोग करते हैं। इसलिए, शीघ्र पता लगाने से तर्कसंगत एंटीबायोटिक उपयोग, एंटीबायोटिक चिकित्सा की वृद्धि को कम करने आदि में मदद मिलती है एंटीबायोटिक प्रबंधन. संचयी रूप से, ये उन्नत सूक्ष्मजीवविज्ञानी निदान तकनीकें रोगाणुरोधी प्रतिरोधी रोगाणुओं के उद्भव को रोकती हैं और अनगिनत जीवन को प्रभावित करती हैं।

पैथोलॉजी कैसे काम करती है

“कैंसर है या नहीं?” माइक्रोस्कोप के तहत बायोप्सी की जांच करने वाला एक रोगविज्ञानी यही निर्धारित करता है। कैंसर का सटीक प्रकार और ग्रेड, आणविक जानकारी (जीन परिवर्तन और प्रोटीन मार्कर) के साथ, जो लक्षित दवाओं और इम्यूनोथेरेपी का मार्गदर्शन करते हैं, सभी पाए जा सकते हैं।

परंपरागत रूप से, रोगविज्ञानी रोगग्रस्त अंगों में देखी गई सकल असामान्यताओं का अध्ययन करके और उसके बाद माइक्रोस्कोप के तहत 1,000 गुना तक प्रवर्धन के साथ अंग के संरचित नमूने का अध्ययन करके रोगों का निदान करने में सक्षम रहे हैं। आणविक क्रांति ने कैंसर के निदान से संबंधित विकृति विज्ञान के अभ्यास के तरीके में एक आदर्श बदलाव ला दिया है। आधुनिक कैंसर रोगविज्ञानी (ऑनकोपैथोलॉजिस्ट) ऐसा करने में सक्षम हैं मूल कारण परिवर्तनों का पता लगाएं आणविक स्तर पर. वे न केवल कैंसर के निदान की पुष्टि करते हैं, बल्कि कोशिका विज्ञान, हिस्टोमॉर्फोलॉजी, कैरियोटाइपिंग, इम्यूनोहिस्टोकेमिस्ट्री, फ्लो साइटोमेट्री, फ्लोरेसेंस इन सीटू हाइब्रिडाइजेशन (फिश), पोलीमरेज़ चेन रिएक्शन और अगली पीढ़ी के अनुक्रमण के आधार पर कैंसर के प्रकार का अत्यधिक सटीक लक्षण वर्णन भी प्रदान करते हैं। ऑन्कोपैथोलॉजिस्ट क्लिनिको-रेडियोलॉजिकल सहसंबंध द्वारा कैंसर के मॉर्फो-आणविक उपप्रकार और ग्रेड को उसके चरण के साथ एकीकृत करके कैंसर का एक व्यापक अंतिम निदान प्रदान करते हैं।

कैंसर की आणविक रूपरेखा व्यक्तिगत कैंसर चिकित्सा के अभ्यास की आधारशिला बन गई है। उद्भव के साथ, और बाद में लागत में गिरावट आई अत्याधुनिक प्रौद्योगिकियाँ जैसे कि संपूर्ण जीनोम अनुक्रमण, और उत्पन्न डेटा की भारी मात्रा का विश्लेषण करने के लिए एआई उपकरणों की उपलब्धता, ऑन्कोपैथोलॉजिस्ट विकास और प्रसार के विभिन्न चरणों के माध्यम से मानव कैंसर के उद्भव का निदान और भविष्यवाणी कर सकते हैं।

ऑन्कोपैथोलॉजिस्ट पैप स्मीयर, गर्भाशय की एंडोमेट्रियल बायोप्सी, कोलन पॉलीप्स और अन्य कैंसर पूर्व मौखिक और त्वचा के घावों के अध्ययन में कैंसर की जांच और रोकथाम में भी प्रमुख भूमिका निभाते हैं। वे ऑपरेटिंग सर्जन को वास्तविक समय, अंतःऑपरेटिव परामर्श (जिन्हें ‘फ्रोजन सेक्शन’ कहा जाता है) प्रदान करते हैं और ट्यूमर को पूरी तरह से हटाने को सुनिश्चित करने के लिए ट्यूमर छांटने की सर्जिकल सीमाओं का मार्गदर्शन करते हैं।

विभिन्न बायोमार्कर के उद्भव और उपलब्धता ने ऑन्कोपैथोलॉजिस्ट को सटीक उपचार का मार्गदर्शन करने में मदद की है। वे कैंसर के इलाज के प्रति मरीज की प्रतिक्रिया की निगरानी में भी महत्वपूर्ण भूमिका निभाते हैं। वे न केवल न्यूनतम अवशिष्ट रोग का निदान करते हैं और रोग निवारण की पुष्टि करने में मदद करते हैं, बल्कि वे इलाज करने वाले चिकित्सकों को कैंसर की शीघ्र पुनरावृत्ति (पुनरावृत्ति) का पता लगाकर आगे के उपचार के प्रकार और अवधि की योजना बनाने में भी सक्षम बनाते हैं, जबकि दवा प्रतिरोध तंत्र के उद्भव का पता लगाने और वैकल्पिक उपचार रणनीतियों का सुझाव देने में भी मदद करते हैं।

बायोकैमिस्ट्री, माइक्रोबायोलॉजी और पैथोलॉजी वे आंखें हैं जो कैंसर देखभाल की अनदेखी दुनिया को देखती हैं। वे प्रारंभिक जांच, सुरक्षित व्यक्तिगत उपचार से लेकर दीर्घकालिक अस्तित्व और आशा की निगरानी तक, पर्दे के पीछे चुपचाप भारी काम करते हैं।

(डॉ. शर्ली सुंदरसिंह प्रमुख हैं, ऑन्कोपैथोलॉजी विभाग, कैंसर संस्थान (डब्ल्यूआईए) drsirleysundersingh@gmail.com; डॉ. थुथी मोहन प्रमुख हैं, क्लिनिकल बायोकैमिस्ट्री विभाग कैंसर संस्थान (डब्ल्यूआईए) drthuthiMohan@cancerinstitutewia.org; डॉ. आर. पैकिया नैन्सी प्रमुख हैं, माइक्रोबायोलॉजी विभाग, कैंसर संस्थान (डब्ल्यूआईए) p.nancy@cancerinstitutewia.org)

प्रकाशित – 06 फरवरी, 2026 10:58 पूर्वाह्न IST

Continue Reading

Trending